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w(x) Transverse displacement

u(x) Longitudinal displacement

vr
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Thickness of 1th layer
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Elastic (Youn g l s) modulus of ~th layer
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~ Mass density of ~th layer

E*(U)) Ev (1 + iö) = complex dynamic elastic modulus of
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8 Elastic loss tangent of viscoelastic core
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viscoelastic core

Gv Shear storage modulus of viscoelastic core

B Shear loss tangent of viscoelastic core

w Radial frequency

Moment of inertia of the ~th layer

k* Compressional spring constant

W
~~~ 

Compressional composite frequency

z(x, w) Mechanical impedance of beam

P0 Applied force
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ABSTRACT

The effects of transverse compres—
1 sional damping on the vibratory response

of three—layer elastic—viscoelastic—elastic
beams are considered both analytically and
experimentally in a mechanical impedance
format. The relative importance of this
type of damping is assessed by comparison
to shear damping mechanisms inherent in
the composite using the Mead and Markus
model. Results suggest the effects from
compressional damping have a relatively
narrow frequency bandwidth centered at the
compressional (delamination ) frequency, W C,
of the composite. Compress ional damping
is shown to have a minimal effect on the
transverse dynamic response of thin three—
layer damped beams for frequencies signifi-
cantly less than W C, where a shear damping
model provides a better description of
dynamic response.

ADMINISTRATIVE INFORMATION
This report represents work performed under the Explora-

tory Development Acoustical Program, Silenc ing for Auxiliary
Machinery Systems Program Element/Task Area 6251J.3N, SF 11.711-52-

702, Task 18182, Work Unit 1—2711.0—111.

The cognizant NAVSEA program manager is Mr. S. G.

Wieczorek, NAUSEA (SEA 037T); the DTNSRDC program manager is
Dr. Y. F. wang (code 2711.0).

INTRODUCT ION

The transverse vibratory response of elastic—viscoelastic—

elastic laminated beams has received considerable attention

s ince Plassl* and Kerwin2 examined the potential of this compo-
site in vibration control. Many investigators’8 have studied
the dynamic response of the three-layer damped sandwich beam,

concentrating predominantly on the broad-band damping inherent

in the composite associated with shear damping. In a classic

*A complete listing of references is given on page 25
.1
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paper2 on this subject, Kerwin analyzed the shear damping in
an infini tely long, simply supported beam with a soft visco-
elastic core and a thin, stiff constraining layer, deriving an

• 
_ expression for the complex flexural stiffness of the beam

section. DiTaranto3 extended Kerwin 1! work deriving a sixth—

order differential equation of motion in terms of dynamic

longitudinal beam displacement, u(x). In a later paper, Mead

and Markus4 derived a sixth-order differential equation in
terms of the transverse motion of the beam, which is an impor-
tant factor in experimentally validating the model. In the

same paper, Mead and Markus also examined the form of the

boundary constraints on the composite for many widely used

end conditions and showed that the eigenvalues for such a
system are generally complex for boundary conditions other
than simply supported. Lu and Douglas6 evaluated the Mead and

Markus model in several experiments and showed that it ade-

quately predicted the damped resonance frequencies and damping

inherent in the low—order modes of two relatively thin three—

layer laminates.

An important feature of the above—mentioned work was the

assumption that transverse displacements, w(x), of all points
on a cross section are equal. For thin composites where the

product of the viscoelastic layer thickness and the constrain—

ing layer thickness is small, shear damping appears to the
major factor controlling the resonance response of these beams

in the audiofrequency spectrum. However, as the thickness of

soft (Ev < 1O~ N/m2)* viscoelastic cores and constraining

layer increase , compress ional damping can be expected to play
an increasingly important role in the dynamic response of such
structures. This report examines, both analytically and exper-
imentally, the contribution of transverse compressional damping

on the transverse dynamic response of the three—layer damped

*Definitions of abbreviations used are given on page vii.

2 
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beam and compares the importance of this form of damping with

shear damping by using the model developed by Mead and Markus.

ANALYTICAL FORMULATION

¶I~he three—layer damped beam consists of two elastic—face
• layers separated by a thin, relatively soft viscoelastic

damping core. Figure 1 depicts the geometry and coordinate

system utilized in this report.

-~~-
ELASTIC CONSTRAINING LAYER 4~ - —

VISCOELASTIC LAYER ~E-E—I--E——Tii—T—I--—I ~~‘ t
1

ELASTIC LAYER

1 0 

Po5~
Jt

Figure 1 — Geometry and Coordinate System for the Fully
Constrained Ela stic—Viscoelastic—Elastic Beam

The case of fixed—free (cantilever ) boundary constraints is

considered with a concentrated sinusoidal load, p0e
1Wt,

applied at the free end to facilitate comparison between ana-

lytical and experimentally derived spectra. The dynamic

response of this composite is examined in a mechanical imped-

ance format with m1 the mass per unit length of the ~th layer;
E1 the elastic (Young

’s) modulus of the 1
th layer; Ev* =

E
~ 
(1 + iâ) the dynamic complex modulus of the viscoelastic

core, where E
~ 
is the elastic storage modulus and 6 the elastic

loss tangent; and Gv* = Gv (1 + iB) the dynamic complex shear

3



modulus of the viscoelastic core where, in a s imilar manner,
Gv is the shear storage modulus and B the shear loss tangent.

‘rhe complex elastic and shear moduli are assumed to be both
temperature— and frequency—dependent, and the loss tangents
of the elastic layers are assumed negligible. No restric-

tions are placed on the densities and moduli of the layer s,
except that the viscoelastic layer is considered soft com-
pared to the elastic layers, i.e., E

~ << 
E1, and its mass is

4iegligible. The elastic layers need not be identical. The

time—dependent equations of motion discussed herein assume

steady—state harmonic displacements.

TRANSVERSE COMPRESS IONAL DAMPING MODEL

The equations of motion for the three—layer damped

laminate depicted in Figure 1 and based only on compressional

damping are derived by assuming that the viscoelastic damping

core is linear and relatively soft so that it can be modelled
as a complex compression spring, and the rotary inertia and

shear deformation of the elastic layers are negligible so that

the Bernoulli—Euler beam theory can be employed. With these

assumptions, the equations of motion for this composite can
be written as two coupled fourth—order partial differential

equations:

~
4w1 ~

2w1
- E1I1 ~~~ 

= k*(w1 — w
3) 

+m 1

(1)

• ~i. 2

- E
3
1
3 ~~~ 

= k* (w
3 

- w1) + in
3 .~2

where w~ (x) is the transverse displacement of the ~
th layer ,

Ii the moment of inertia of the ~th layer, and k* is the
viscoelastic spring constant, (E~*b)/(t~ ). Assuming harmonic

LI.

-4



time dependence , these equations can be combined into a single

eighth—order differential equation with complex coefficients

for the basic cantilever beam (i.e., layer 1):

d8w1(x) + 
[k* - m1w2 

+
k*_-

• L E1 I~ E
3 
1
3 J dXII.

• (2)

• r 4 2

+ 
m
3
m1w 

- k*W (m1 + in3
) 

- 0
• L E1I1E3

1
3 

w1 x —

The response of the constraining layer can be written in terms

of the response of the cantilever beam as :

2 4k *_ m 1
W d w

w
3(x) 

= k* w1(x) + E111 dx~

Using a progressive wave approach, the solution for equation

(2) can be written in terms of the complex wave numbers € and

~.L as:

w
1(x)  = A1e~~ + A2e~~~ + ~~~~~~ + A4e~~~~

+ A5
e~~ + A6e~~~ + ~~~~~~ + A8e~~~~

SI

and

w
3
(x) = M [A 1e~~ + A~e~~~C + A

3
e~~

)C + A4e
1
~~~]

(4)

• + N [A 5e~~ + ~~~~~~ + 7~ e~~~ + A8e~~~~~]

5
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where

• I a (a 2 ‘~1/2 1 1/4
~~~~~ 

— \ l V — ’ ~~/ j

r 2 1/2 1 1/4
= [- 

~ 
+ (

~
_ 

~. ) j

a 
k* - m

1
W 2 

+ 
k* - m

3
w2

• E111 E
3
1
3

= 
m1m3

W4 - k* w2 (m 1 + in3)

• i E111 E3
1
3

Ik * - m1w 2 4
M = L  k*

and

Ik* — m1w
2 

4
N = L  k* + E 1I1 M

For f ixed—free boundary conditions, the four equations of

constraint for layer 1 require:

w1 (4..) = 0

!~ SI

_I  =• ~w I
~

• ~ 2w \

x=O

6 
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and

= + 
P0elWt

As indicated, the applied concentrated sinusoidal loading is
accounted for implicitly in the shear boundary constra int at
x = 0.

The four boundary constraints for layer 3 require:

and , / = O a t x = O a n d x= L  (6)

The shear condition evolved from assuming the effective shear

force, 6k ff (w
3 

- w1) transmitted by the viscoelastic layer

at the ends of the laminate is zero .

(i.e., u r n  8kef 2 u r n  (k*6A) = 0
6A~~~O 6A 40  V

These equations of constraint can be placed in a matrix repre-

sentation to solve for the complex coefficients, AnI by
standard matrix inversion methods or EM] [A] = [P]. These

coefficients can then be determined at each frequency of con-

cern by multiplying the inverse of the constraint matrix, EM],
and the loading matrix, EP]. From this information, the

mechanical impedance at any arbitrary point on the surface

of the cantilever beam (layer 1) can then be written:

Z1 (x , w) = 

~~ 
[A1e~ + A2e~~~

C + ~~~~~~~ +

+ A5
e~~ + ~~~~~~ + ~~~~~~ + A8e~~~~~] 

-1

7
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and the transfer impedance to layer 3 as

z3 (x , w) ,~~ {
M [A1e~~~ + A2e~~~

C + I~~e
1
~~~ +

+ N [A
5
e~~~ + J~~e~~~ C 

+ ~~~~~~~~ + A8e~~~~~C ] )

• c3 ~~~ -ic3 ic’ ~~ i-u’ _j~~ is3 A~. pofE 1I1

-
c 

-
~~

•
iL 

•
—e4 •ic4 •

iC~ •
s4. ~—P~ •i5~ ~~~~~~~~ A, 

—

~~~~~ ~~~~ ~~~~~ ±~~~~~~ . ~~~~~~~ ~~~ ~~~~ ~ ‘ 
0

~4~ 2 ~~~~ ~~~~~ ~~~~~ ~~~~ ~~~~2 _~~~~2 ~~~~~~~ 
-:

5 
0

~:: ~~~~~~~:4~~~~~~~~~~::: i~~::::~~::: ~ ::: : ~~:::~~~:_z:
I 

~~~~~~~~ :~~:~
_ 

~~~~~~~~~ ~~ ~~~~~~~~~~ ~~~ ~~ 
0

~~~~~~~~~~~ —xc3.~~~ I ~~~~~~~~~~~~ iw3e~~~~~~ l *l3eM4 
~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~ 0

(8)

From this analytical model, the dynamic response of a damped
three—layer laminated beam containing only compress ional damp-

ing can be stud ied by examining the mechanical impedance

spectrum of severa l beam geometr ies and material properties.

~~ .. Figure 2 shows the mechanical impedance spectra generated from

this model of a selected case : a steel laminate with geometry
outlined in the figure, and a viscoelastic damping core with
an elastic storage modulus of 6.89 . io6 N/rn2 (1000 lb— in 2

)

and several values of elastic loss tangent. As is evident

from this figure , the damping in this composite is negligible
except for the spectral region between 250 and 2000 Hz centered
at 500 Hz. In this region , the damping is strongly dependent

8
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on the elastic loss tangent. This result can be anticipated

from consideration of a model which treats the face layers as
lumped masses and the viscoelastic layer as a complex distribu-
ted spring. This model gives rise to a compressionai. frequency
inherent in composite working to delaminate the face layers :

= [(~*) (P~ t1 + P 3t
3) ]  

1/2 
= 

~~~~~~~ ~~~~~ +

Since , according to this model, the viscoelastic layer
receives the greatest dynamic compressional strains in this

• spectral region (which , in turn , is the primary mechanism
converting vibratory energy to heat), it is to be expected

• that vibrational modes of the composite occurring near this

frequency would exh ibit a high degree of damping for high-

• 

- loss viscoelastic materials .

- ~J, ~‘ I~~~k hI~~. 1~
i i  l ii  I i i ii g i  ~

BEAM GE OMETRY

* 0.4921 .5 (t9.315 in.) “‘~ I
~ I 11 0.0179 n, (0.70 In.) I I

~., io2 r - 0.0127 ii. 0.50 in.) $
13 0.0121 m (0.415 m l i— : — B 3 . 19.5 • 1011 RIm2 a

• P3 • 7700 kg/n? &( ;~ 4
a ~ — (0.00073 lb-Inc/in4) j,

r.i 1~I h % 1~~~~~$
. 5 .  - 

‘
I I

‘ I
- 

B, e.e~ • 10 N/n? fl~00 ~~ 
I

~ iO~ 6 • 1.00 l i —

I I l 1 I I ~~~I I h u l l  I I I
20 tOO 1~~~ 9000

FREOUENCY (Hz)

Figure 2 - Transverse Driving Point Mechanical Impedance and
Phase Angle Spectrum for a Three-Layer Damped Beam ,
Fully Constrained Compress ional Damping Model

9



DISTRIBUTED MASS-VISCOELASTIC SPRING—MASS SYSTEM
Since the dynamic response of the one—dimensional mass—

complex viscoelastic spring—mass system can provide insight
to both understand and interpret the results of the trans—
verse compressionally damped three—layer beam models described
above , as well as to eva luate the dynamic complex elastic
(young ’s) modulus of linear viscoelastic materials, a brief

analytical development is presented below. Assuming a mass—

less complex viscoelastic spring, the driving point mechanical

impedance of mass 1 can be written as:

z11(w) = I (wm1 + 1

and the transfer mechanical impedance from a sinusoidal

driving force applied at mass 1 to the velocity response of

mass 2 as:

z12(w )  = —i [~~~~ 2 w3 — (rn1 + m2 ) w] (10 )

The distr ibuted viscoelastic layer can be shown to behave as
a simple lumped spring from consideration of the potential

energy stored in an infinitesimal section

dV~~(”) = dk*1 (x2 — x1)
2 (11)

•
‘ SI

*The kinetic energy of the viscoelastic layer can be shown
to be: T(v) = (1/6)(PV/g)tV(*~ — *i)2 and then factored into
the system Lagrangian to obta].n modified equations of motion,
if desired.

10



-1
where

E~* b d y~ E (1 ÷ i 6 ) b dy ~
• dk* = = 

V
tv tv

The total potential energy stored in the viscoelastic layer
can be obtained from integrating along the length of the
lumped system

E ( 1 + i6 ) b ~
Vv = f  dV~~= ‘~‘ (12)

so that the lumped elements of this system can be identified

as:

E~ (1 + iô) b
— tV

= p 1t1b ( 13)

m2 = p 2t2b

From examination of equations (9) and (10), it is seen that

the dynamic response of mass 1 exhibits an antiresonance at

wA* =~~ k*/m2 and a resonance at:

SI 
W *  

~~ 
(14)

while mass 2 exhibits a resonance at the same frequency.

Figure 3 graphically shows the impedance response character-
istics of this system. As is easily seen, placing the lumped

elements of equation (13 ) into the expression for the reso-
nance compressional frequency yields

ii

A



* 
[~~

,_(1 + i6)  / ~ 1 
1/2

L ~ p 1t1 
+ p~ t2

This equation identifies the spectral band where transverse
compressional damping can be expected to dominate the dynamic
response of distributed structures incorporating constrained
viscoelastic layers.

I m2 I
w 

_ _ _ _ _

0 /
I m i l  /

~~ ,
,, “ 

~~‘
-w (m i + m2) I \\ f’

-j 

“ 
I

z
I 1
C) I

I I
I I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I I

FREQUE NCY

Figure 3 - The Mechanical Impedance Magnitude Response
of the Di.trL,uted Mass-Viscoelastic/

Spring—Mass System

SHEAR DAMPING MODEL
The equation for transverse motion for the three—layer

damped laminate, based only on shear damping, was derived by
Mead and Markus4 assuming:

12
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1. The shear stra in is constant across the depth of the
damping core which is linearly viscoelastic.

• 2. Shear strains in the face plates and longitudinal

stresses in the core are negligible.
3. Transverse direct strains in the core and face plates

are negligible so that transverse displacements of all points
on a beam cross section are equal.

11. The shear stress in the core acts uniformly between
the midplanes of the face plates.
From these assumptions , a sixth—order partial differential

• equation for the damped laminate subjected to a concentrated
sinusoidal loading was derived4 in terms of the transverse
displacement var iable , w :

m ~
h1w- g (3. + Y) —~~ + 

~~ 
= Dt ~~~ (15 )

where

Gv* / 1 1g — ç ~~E1
t
1 

+

y ~~~~~ 
E~t3.E3

t
3

— Dt \E 1t1 +

d 00 + 1/2 (t1 + t3 )
.
~ 55

(s1t1
3 + ~~t3

3) b
Dt

_ 
12

13
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Again, a progressive—Wave solution for this equation can
be written in terms of the complex wave numbers 6]’ 62’ 

and 6~

1.

w(x ) 00 C]e
61~

C + C2e
_ 61~

C + C3e
82~

C 
+

+ c5e63~C + C6e
_ô3~C (3.6)

where

= + 
~2 

— ~ (~ + Y)] 
1/2

82 = [ (Y i + Y
2) + ~ 

(V ~ (1 + Y )]

= [ ( Y 3. +_Y
2)  . ( Y i Y

2) ,~~~ 
g 

(1 + Y) ]  
1/2

r / 2 3\1/2 1I ~2 
I~~2L r ~
\—

~
-- 

~~

SI

~~]
= 

_~~~~~_~~~g2 (1

~2 = - g-~~~g (1 + y)~~~— -~~~~g
3 (1+ Y)

~1j.



For cantilever end conditions , the equations of constraint
require (at the free end ) the moment, x~ is zero or

D ~2 2

the shear force , S = ~x/~x equal the applied concentrated
force or

and the longitudinal face plate displacement, u (x ) ,  are unre-
strained. These conditions reduce to the simple form at
x = 0:

-z i.wt

~~~ 
r~e ~~~~~~~ ~~~~~~~~~—~~= 0 ;  

~~~ Dt 
; and —~~ - Dt 

= 0

At the fixed end , the equations of constraint require:

w(~~) = 0; = 0; and u (~~) = 0

The longitudinal displacement can be described in terms of
the transverse displacement for a concentrated dynamic load

SI by the expression:

/ —Dt ~ r 1 ~5w y ~
3w 1mw 2 \ ~wlu(x ) = 

~E1t1d) [~ ~x
5 

- g ~~~ 
- 

~D~g2 
+ Y
) 

~
j (‘7 )

15



I.

These equations can be placed in a matrix representation and

solved for the complex coefficients, C~, in a manner similar to

that described in the compress ional damping model:

~L!~:9~: :~:: :~ 1~EI: :E!~
6 4 ~6i4 6 24 —6 24 6~~~4 _ 5  4

e 1 a e e a i e 3 • Cii 0

~~ ~~~~~~~~~~~ ::~ ~~~~~~~
H ~~~~~;;;;~~~~;zt:;; 

.

~~~~~~~

• (18 )

where

2
~ ~i- mwR1 = — —

t

2
4 mw

R2
v

2 Dt

• 
4 mw2

~~~~63 ~~~~~~~~~~~~

sl =~~~~~
_~~~ol

3_ (~~22 ÷Y) 6~

3.6
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S = _.•~•~
_ _ 6 -( +~~\ o

2 g2 g 2 
\ D~g2 2

and 

S3~~~~~~~~~~
o
33 (~ w:2

+ Y) 
8
3

upon determining the C~ coefficients by matrix 
inversion , the

mechanical impedance at an arbitrary point on the laminate can

be calculated from the expression:

P0 f 61x —61x 82X
z(x, w) = ~~ ~c1e + C2e + C.~e

-6 2x 83x -63x\
+ C4e + C5

e + C6e ) (19)

Previous papers4 6  on this subject have shown that shear

damping is a broad-band phenomenon strongly dependent on the

shear loss tangent of the viscoelastic layer.

EXPERIMENTAL EVALUATION
Three damped sandwich beams were constructed to serve to

evaluate the re lative impor tance of compressional and shear

damping in elastic-viscoelaStic—elastic beams. Two beams were

designed with the compressional frequency, U) , located in 20—

to 5000—Hz spectrum , and a third beam was designed with

above 5000 Hz. The elastic face layers of all beams were con—

structed from steel. Specimens 1 and 2 incorporated an acryl—

lic base viscoelastic material with a complex dynamic shear

modulus in the 20— to 5000—Hz spectral region that can be

~ 

~~~~~~~~~~~~~



• 
approximated (assuming thermorheologically simple material
behavior) by the expression :

G
~ 

= (1.42 x io~) e
0
~~

9k ~n(w/~~) (N/rn2)
(20 )

= 1.46

Specimen 1 contained a viscoelastic layer thickness of
0.00686 m which placed its composite compressional frequency

near 900 Hz, and specimen 2 contained a viscoelastic layer
• thickness of 0.000102 m which placed its composite compressional

frequency outside the spectral range of the experiments reported
herein. The complex dynamic elastic modulus used to generate

the analytical compressional damping spectrum for specimen 1
was obtained from assuming incompressibility and a real
Poisson ratio (i.e., E

~ 
= 3G~ 

and 6 =

Specimen 3 incorporated a medium—density, closed—cell ,
neoprene foam layer with a complex dynamic elastic modulus that
can be approximated by the expressions :

0.k0Ll.1~n(W/2rr) 2
= 1.078 105e (N/rn )

0.8 20 Hz < w/2rr < 60 Hz (21 ) j
6 = ~~~~~~~~~~~~~~~~~~~~~~~~ 60 Hz < w/2~ < 150 Hz

0.45 150 Hz ( w/2n ( 500 Hz

The complex dynamic elastic modulus of the neoprene foam

(equation (21)) was obtained from a series of resonance mass—
spring exper iments . The measurements to determine the expres-
sions in equation (20 ) were obtained from a commerc ial

18



apparatus which utilizes dynamic stress-strain and related

phase—angle measurements . The thickness of the foam layer was

0.0127 m. The compressional frequency of this composite is
located near 200 Hz.

The cantilever test fixture used to mount these beams was
• evaluated by comparing the measured mechanical impedance of

an undamped simple beam with Bernoulli-Euler theory . Figure 4

shows the 20 to 5000 Hz mechanical impedance spectrum of a
steel beam 0.0178 m thick, 0.0508 m wide, and 0.4921 m long.

i03 I I I I l I I Ij  ~~‘ ~~~~~~~

= EXPER IMENT $ :
2 ~ 

— ••••••• BERNOUL LI-EULERE - THEORY

~~~102~~~
BEAM GEOMETRY I

2 = 0.4921 m (19.375 in.)

~~~~~~ ::: ~~~~~~~~~~~~~~~~~~ S
. 

•:
Z 1 O 1 r 

I P
1o 2 I I I I I ii I • i uJ: j : 

______ 
:~_

20 100 1000 5000
FREQUENCY (Hz)

SI

Figure 11. - Transverse Driving Point Mechanical Impedance
Spectrum of an Elastic Beam , An Eva luation of

Experimental Boundary Conditions
and Instrumentation
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With this test fixture, excellent agreement was observed

• between measurement and theory as to values for both resonance
and antiresonance frequencies. The dynamic range between
associated resonance—antiresonance pairs for the measured

- - 
steel beam spectrum exceed 40 dB throughout the 20- to 5000-Hz
spectrum increasing to in excess of 100 dB for the low—order
vibrational modes. All measured spectra discussed in this

report were obtained from transducers which had a negligible

mass loading (<0.004 kg) effect on the structure.

By using the methods described above, a 20— to 5000—Hz

mechanical impedance and associated phase—angle spectrum was

obtained for test specimens 1, 2, and 3 whiáh are presented in
Figures 5, 6, and 7 respectively.

~ 
9O~~~~~.. I 

~ 1 1 1 1 1 1 1  I I !_

I ( $ L A ~~L J L I

io~~
_ 

1 1 1 1 1 1  I 1 I I I I l I 1  I I I :

EXPERIMENT
Z ‘~ - COMPRESSIONAL DAMPING MODEL -

P1 1O~~~— —

b - 0.O5OS m (2.O hi.)

102 i i  1 1 1 1 1 !  I I I  i i i i i l  I I I
20 100 1000 5000

FREQUENCY (Hz)

Figure 5 — Transverse Driving Point Mechanical Impedance
and Phase-Angle Spectrum for the Fully

Constrained Specimen 1
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Figure 6 — Transverse Driving Point Mechanical Impedance

and Phase—Angle Spectrum for the Fully
constrained Specimen 2

~~!

_ _ _
i0~~~ : I I I I I ~~ I I I I T I J  :.~~~~1;~

••l

ill : — E*PERIMENT

.~:

13 - 00121 m (0470 .i.I
- S • . (2.0 11.1

i t u t u  I I 1 1 1 1 1 1 !  I I I
20 100 1000 5000

FREQUENCY Hit

F igure 7 — Transverse Driving Point Mechanical Impedance
and Phase—Angle Spectrum for the Fully

Constrained Specimen 3
21

- -  
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ A. •~~• ••



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • •—••

~~~~~

• _ _ _ _ _ _ _ _

11

• DISCUSSION

The utilization of structural damping methods to control

dynamic structural response has become increasingly widespread

in recent years due to increased performance standards for

vehicles as well as stricter environmental standards. Con—
• strained damping is a major proven structura l damping tech-

n ique with high damping efficiencies. This report has

attempted to isolate the major damping mechanisms inherent

in constrained composites in order to ascertain their potential
and provide some insight into the effective design of such

structures. For this reason a cantilever beam configuration
was selected a long with a comparison of individual analytical
models incorporating only one of the major damping mechanisms.

As the results indicate in Figures 2, 5, and 7, compres—
sional damping can provide significant attenuation in the

vibrational energy of resonant structures in a narrow frequency

band centered at the compressional frequency of the composite.

In addition, the elastic loss tangent of the viscoelastic layer
is an important factor controlling the bandwidth and amount of

effective vibratory attenuation. Examination of Figure 6
demonstrates that, for frequencies significantly removed from
W
c g compress ional damping provides little attenuation to the

dynamic structural response.
Within the stated assumption, the model developed for

compressional damping in this report provided excellent agree-
ment with the measured data in the spectral regions governed
by this mechanism. Finally, additional support for the Mead
and Markus model of shear damping was provided by the agreement

observed between experiment and theory for specimen 2, espe-
cially the mechanical impedance magnitude and relative bandwidth

near the resonance frequencies of the composite which is a
measure of the modal damping inherent in the structure.
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CONCLUS IONS
• It is concluded that shear damping is a broad-band

mechanism which adequately, for most engineering purposes,

describes the damping inherent in the transverse dynamic

response of elastic—viscoelastic—elastic beams, outside the

spectral influence of compressional effects. Inside this

• spectral band the relative displacement between the elastic

layers of the composite must be considered in dynamic

calculations.
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